

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

Subject Code:

22323

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking
No	Q.N.		Scheme
1.		Attempt any FIVE of the following:	10
	a)	Draw symbol and write truth table of EX-OR gate.	2M
	Ans.	Symbol	
		ALT	
		B-J)	
			Symbol
		Truth Table	<i>1M</i>
		Truth Table for two input EX-OR gate. A logical gate whose output	
		is one when odd number of inputs are one, for any other condition	
		output is low.	
		Inputs Output	
		A B Y	Truth
		0 0 0	Table
		1 0 1	<i>1M</i>
		0 1 1	
		1 1 0	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

Subject Code: 22323

b)	Define terms "Minterm" and "Maxterm" with proper example of each.	2M
An	Minterm: Each individual term in the canonical SOP form is called as Minterm. Example: Canonical SOP Y = $ABC + A\overline{BC} + \overline{ABC}$ Each individual term is called minterm	Each Definitio n with example 1M
	Maxterm: Each individual term in the canonical POS form is called as Maxterm. Example: Canonical POS $Y = (A + B) \cdot (A + B)$ Each individual term is called maxterm	Each Definitio n with example 1M
c) Ans	Draw symbol of JK flip-flop and write its truth table. Symbol	2M
	$J \circ \qquad $	Symbol 1M
	Inputs Output J_n K_n Q_{n+1} 0 0 Q_n 0 1 0 1 0 1 1 1 $\overline{Q_n}$	Truth Table 1M

Page 2 / 26

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

d)	State importance of pipelining in 8086 microprocessor	<i>2M</i>
Ans.	• In pipelining, while the current instruction is executing, next	
	instruction is fetched using a queue.	Any two
	• Pipelining enables many instructions to be executed at the same	points
	time.	<i>2M</i>
	• It allows execution to be done in fewer cycles.	
	• Speed up the execution speed of the processor.	
	• More efficient use of processor.	
e)	Give any four applications of digital circuits.	<i>2M</i>
Ans.	Applications of digital circuits	
	i) Object Counter	Any
	ii) Dancing Lights	relevant
	iii) Scrolling Notice board	four
	iv) Multiplexer	applicati
	v) Digital Computers	ons
	vi) Washing machines, Television	<i>2M</i>
	vii) Digital Calculators	
	viii) Military Systems	
	ix) Medical Equipments	
	x) Mobile Phones	
	xi) Radar navigation and guiding systems	
	xii) Microprocessors	
f)	Define the following terms –	<i>2M</i>
	(i) Physical Address	
	(ii) Effective Address	
Ans.	(i) Physical Address (Note: Dimensional)	El.
	(Note: Diagram is Optional)	Each
	Physical: The address given by BIU is 20 bit called as physical address. It is the actual address of the memory location accessed by	definitio
	address. It is the actual address of the memory location accessed by	n 1M
	the microprocessor. It is calculated as	1 ///

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

Subject Code:

22323

	(ii) Effective Address Effective Address: Effective address or the offset address is the offset for a memory operand. It is an unassigned 16 bit number that gives the operand's distance in bytes from the beginning of the segment.	
g)	Choose instruction for following situations: (i) Addition of 16 bit Hex. No with carry (ii) Division of 8 bit No. (iii) Rotate content of BL by 4 bit. (iv) Perform logical AND operation of AX and BX	2M
Ans	 (i) Addition of 16 bit Hex. No with carry (Note any other relevant registers shall also be considered) ADC Destination 16, Source 16 OR ADC AX, BX OR ADC AX, 4500H (ii) Division of 8 bit No. (Note any other relevant registers shall also be considered) DIV SOURCE OR DIV BL 	Each instructi on ½ M

Subject: Digital Techniques & Microprocessor

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject Code: 22323

		(iii)Rotate content of BL by 4 bit.	
		MOV CL,04H	
		ROR BL, CL	
		OR	
		MOV CL, 04H	
		ROL BL, CL	
		(iv) Perform logical AND operation of AX and BX AND AX,BX	
2.	a)	Attempt any <u>THREE</u> of the following: Convert following decimal to octal and Hexadecimal	12 4M
		i) $(297)_{10} = ()_8$	
		ii) $(453)_{10} = ()_{16}$	E
	A		Each
	Ans.	(i) $(297)_{10} = ()_8$	conversi
		8 297	on 2M
			2M
		8 37 (LSD)	
		3 7 5 1	
		$4 \rightarrow (mso)$	
		$(297)_{10} = (451)_8$	
		$(297)_{10} = (431)_8$	
		$(ii) (453)_{10} = ()_{16}$	
		$(453)_{10} = (9)_{16}$ $(453)_{10} = (9)_{16}$ $(453)_{10} = (9)_{16}$ (Hex) $\frac{16}{16} = 5 \longrightarrow 5 (LSD)$	
		16 (453 (Decimal) (Hex)	
		$\frac{1628}{1000} 5 \longrightarrow 5 (LSD)$	
		$16 1 12 \rightarrow 0 \uparrow$	
		1 (mso)	
		$(-453)_{10} = (105)_{16}$	

Page 5 / 26

Subject: Digital Techniques & Microprocessor

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject Code: 22323

b)	Convert the given minterm into standard POS form. $Y(A, B, CD) = (\overline{A}, BC) + (B, \overline{C} \overline{D}) + (\overline{A} \overline{B})$	<i>4M</i>
Ans.	Note: Solution is given by considering $Y(A, B, CD)$ as $Y(A, B, C, D)$ $\begin{array}{l} \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array}{} \\ & \end{array}{} \\ \end{array} \\ \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array}{} \\ & \end{array}{} \\ & \begin{array}{l} & \end{array}{} \\ & \end{array}{} \\ \end{array} \\ \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array}{} \\ & \end{array}{} \\ \end{array} \\ \begin{array}{l} & \begin{array}{l} & \end{array}{} \\ & \end{array}{} \\ \end{array} \\ \begin{array}{l} & \begin{array}{l} & \end{array}{} \\ & \end{array}{} \\ \end{array} \\ \begin{array}{l} & \begin{array}{l} & \end{array}{} \\ & \end{array}{} \\ \end{array} \\ \begin{array}{l} & \begin{array}{l} & \end{array}{} \\ & \end{array}{} \\ \end{array} \\ \begin{array}{l} & \begin{array}{l} & \end{array}{} \\ & \end{array}{} \\ \end{array} \\ \begin{array}{l} & \begin{array}{l} & \end{array}{} \\ & \end{array}{} \\ \end{array} \\ \begin{array}{l} & \end{array}{} \\ & \end{array}{} \\ \end{array} \\ \begin{array}{l} & \begin{array}{l} & \end{array}{} \\ \end{array} \\ \begin{array}{l} & \begin{array}{l} & \end{array}{} \\ \end{array} \\ \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array}{} \\ \end{array} \\ \end{array} \\ \begin{array}{l} & \begin{array}{l} & \end{array}{} \\ \end{array} \\ \end{array} \\ \begin{array}{l} & \end{array}{} \\ \end{array} \\ \end{array} \\ \begin{array}{l} & \begin{array}{l} & \end{array}{} \\ \end{array} \\ \end{array} \\ \begin{array}{l} & \end{array}{} \\ \end{array} \\ \end{array} \\ \begin{array}{l} & \end{array}{} \end{array} \\ \begin{array}{l} & \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} & \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} & \end{array} \\ \end{array} \\ \begin{array}{l} & \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} & \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} & \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} & \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} & \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} & \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} & \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} & \end{array} \\ \begin{array}{l} & \end{array} \\ \end{array}$	Standar d SOP form 2M Conversi on to Standar d POS 2M
c) Ans.	Draw symbol and write truth table for the following flip flop and give one application of each. i) Clocked R-S flip flop ii) T- flip flop (i) Clocked R-S flip flop Symbol	<i>4M</i>
	S RS Clock Alip Alop R	Symbol ½ M

Page 6 / 26

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

Subject Code: 22323

		Application: i) Used to design counters in digital circuits. ii) Can be used in frequency divider circuits.	Any one Applicat ion ¹ / ₂ M
	d) Ans.	Prove $A(\overline{A} + C)(\overline{A}B + C)(\overline{A}BC + \overline{C}) = 0$ Note: Any other relevant laws applied shall be considered while obtaining the correct answer.	4M
		L'H'S: $= A(\overline{A}+C)(\overline{A}B+C)(\overline{A}B+C)(\overline{A}B+C)(\overline{A}B+C)(\overline{A}B+C)(\overline{A}B+C)(\overline{A}B+C)(\overline{A}B+C)(\overline{A}B+C))$ $= (0+AC)(\overline{A}B+C)(\overline{A}B+C)(\overline{A}B+C)(\overline{A}B+C))$ $= (0+AC)(\overline{A}B+C)(\overline{A}B+C)(\overline{A}B+C))$ $= (0+AC)(\overline{A}B+C)(\overline{A}B+C)(\overline{A}B+C))$ $= A\overline{A}BC+AC\overline{C}$ $= (0+C)(\overline{A}B+C)(\overline{A}B+C)(\overline{A}B+C))$ = 0 = R + R + S + R + R	Correct solution 4M
3	a) Ans.	Attempt any <u>THREE</u> of the following: Implement OR gate and NOT gate using "Universal NAND gate". Write expressions for both. 1. "OR" gate using "Universal NAND" gate:	12 4M
			Output Expressi on 1M
			Circuit Diagram 1M

Page 8 / 26

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

b)	2. "NOT" gate using "Universal NAND" gate: $Y = \overline{A \cdot B} = \overline{A \cdot A} \qquad \dots \text{since } A = B = A$ But $A \cdot A = A$ $\therefore \overline{Y = \overline{A}}$ Input $A = B = A$ $A = B = A$ $A = B = A$ Explain following instructions for 8 bit and 16 bit data.	Output Expressi on 1M Circuit Diagram 1M 4M
	(i) PUSH (ii) DAA (iii) IDJV (iv) XOR	
Ans	 Note: Any other relevant registers shall also be considered in the example/explanation. (i) PUSH Format: PUSH source This instruction decrements the SP (Stack Pointer) register (by 2) and copies the word specified by source to the location at the top of the stack. Here, Source can be a 16-bit general purpose register, segment register or memory location. Example- PUSH AX OR PUSH AX This instruction decrements the stack pointer by 2 and copies the 16 bit data from AX register to the stack segment where the stack pointer then points. 	Explain ation of each ¹ / ₂ M Example for each case ¹ / ₂ M

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

Subject Code:

22323

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

c) Ans.	Draw waves for positive and negative triggering with proper labeling. Identify two situations where these triggering can be used? Note: Any additional relevant point related to triggering situation shall be considered	4M
	Positive-edge trigger	Diagram 2M
	 Edge triggering can be used in flipflops as clock input. 	Any relevant situation where
	 It is used in counters circuits. They can be used in shift registers They can be used to synchronous data. 	triggerin g is used 2M
d) Ans	Simplify $Y=F(A, B, CD)$ = Σm (1, 2, 8, 9, 10, 12, 13) + d(4,5) Using K-map and write expression Note: Solution is given considering $Y=F(A, B, CD)$ as $Y=F(A, B, C, D)$	4M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

Subject Code:

22323

		• K- map representation for the given expression will be - AB $\begin{array}{c} D & \overline{L}D & \overline{L}$	Correct K-map 2M Correct equation 2M
4	a)	Attempt any <u>THREE</u> of the following Suggest "Two instruction" for each of the following addressing modes. (i) Register Addressing Mode. (ii) Direct Addressing Mode (iii) Based Indexed Addressing Mode (iv) Immediate Addressing Mode.	12 4M

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

Subject Code:

22323

a. MOV AX, CX b. AND AL, BL c. ROR AL, CL ii) Direct addressing mode: a.MOV AL, [3000H] b. AND AX,[8000H] c.INC [4712H] iii) Based indexed Addressing mode: 1.MOV AX, [BX][SI] 2.ADD AL, [BX][DI] 3.MOV AX, [BX+SI] iv) Immediate addressing mode: 1.MOV AL, 46H 2. MOV BX, 1234H	onside r any two structi on, each structi on ½ M
3. MOV DX, 0040H	
b) Minimize the expression and draw logic circuit using basic gates. 4	<i>4M</i>
F (A,B,CD) = π m {0, 2, 4, 6, 7, 10, 11, 14, 15}	
Ans. Note: Solution is given considering $Y=F(A, B, CD)$ as $Y=F(A, A, CD)$	
K. Map representation for the given expression will be - K-	orrect 7-Map 2M

Page 14 / 26

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

Subject Code:

22323

Page 15 / 26

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION **MODEL ANSWER**

Subject: Digital Techniques & Microprocessor

Instruction Set format

Subject Code:

22323

	Inputs	Combinational logic circuit Memory element	Output	Block diagram 1M
on th input 2. Se feedb 3. Se	e present value o signal. quential circuit ca ack circuit. equential circuit			Explana tion 1M
		en RISC and CISC pro	ocessor (Three point)	4 M
	ompare 8086 and	80586 (Pentium)(3 po	ints)	
			-	
	ferentiate betwee	en RISC and CISC pro	-	
Ans i) Dif Sr. No	ferentiate betwee PARAMETER	en RISC and CISC pro RISC PROCESSOPR	-	Anv
Sr.		RISC	ocessor (Three point)	Any three
Sr. No	PARAMETER	RISC PROCESSOPR	cisc processor (Three point)	-
Sr. No 1.	PARAMETER Instruction set	RISC PROCESSOPR Few instructions	CISC PROCESSOR More instructions	three points
Sr. No 1. 2. 3. 3.	PARAMETER Instruction set Data types Addressing mode	RISC PROCESSOPR Few instructions Few data types Few Addressing modes	Decessor (Three point)CISC PROCESSORMore instructionsMore data typesMore Addressing modes	three points
Sr. No 1. 2.	PARAMETERInstruction setData typesAddressing	RISC PROCESSOPR Few instructions Few data types Few Addressing modes Large number of	Decessor (Three point)CISC PROCESSORMore instructionsMore data typesMore Addressing modesSmall number of	three points
Sr. No 1. 2. 3. 3.	PARAMETER Instruction set Data types Addressing mode	RISC PROCESSOPR Few instructions Few data types Few Addressing modes Large number of general purpose	Decessor (Three point)CISC PROCESSORMore instructionsMore data typesMore Addressing modesSmall number of general purpose	three points
Sr. No 1. 2. 3. 3.	PARAMETER Instruction set Data types Addressing mode	RISC PROCESSOPR Few instructions Few data types Few Addressing modes Large number of	Decessor (Three point)CISC PROCESSORMore instructionsMore data typesMore Addressing modesSmall number of general purpose registers & special	three points
Sr. No 1. 2. 3. 4.	PARAMETER Instruction set Data types Addressing mode Registers	RISC PROCESSOPR Few instructions Few data types Few Addressing modes Large number of general purpose registers	Decessor (Three point)CISC PROCESSORMore instructionsMore data typesMore Addressing modesSmall number of general purpose registers & special purpose registers.	three points
Sr. No 1. 2. 3. 3.	PARAMETER Instruction set Data types Addressing mode Registers Architecture	RISC PROCESSOPR Few instructions Few data types Few Addressing modes Large number of general purpose	Decessor (Three point)CISC PROCESSORMore instructionsMore data typesMore Addressing modesSmall number of general purpose registers & special purpose registers.No load/store	three points
Sr. No 1. 2. 3. 4.	PARAMETER Instruction set Data types Addressing mode Registers	RISC PROCESSOPR Few instructions Few data types Few Addressing modes Large number of general purpose registers	Decessor (Three point)CISC PROCESSORMore instructionsMore data typesMore Addressing modesSmall number of general purpose registers & special purpose registers.	three points
Sr. No 1. 2. 3. 4. 5. 5.	PARAMETER Instruction set Data types Addressing mode Registers Architecture type	RISC PROCESSOPR Few instructions Few data types Few Addressing modes Large number of general purpose registers Load/store architecture	Decessor (Three point)CISC PROCESSORMore instructionsMore data typesMore data typesMore Addressing modesSmall number of general purpose registers & special purpose registers.No load/store architecture	three points

Page 16 / 26

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

22323 Subject Code: Subject: Digital Techniques & Microprocessor ii) Compare 8086 and 80586 (Pentium)(3 points) Any 80586 SR. three PARAMETER 8086 NO (Pentium) points 1. Data Bus 16 bit 64 bit 2M2 Address Bus 20 bit 32 bit 4 GB 3 Physical memory 1 MB Register size 4 16 bit 32 bit Voltage required 5 5 V 3.3 V Clock type 6 1x3x 7 Pipelining Yes Yes Draw 16:1 multiplexer using 4:1 multiplexers "ONLY" with e) **4M** proper labels. Ans. *Correct* Diagram Do *3M* D, D. MIT D. (1) Ds **Proper** Labeling ß D₄ *1M* D, D₅ 4:1 MUX D, D2 D, (2) D D1 MUX (5) Output D, D, 4:1 D_o MUX D10 (3) D2 D11 S. 8 5° 7 s1 select i/p's s2 S3 Do - Dn = Data i/ps D12-D13 D, D14 D. D15

Page 17 / 26

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

Subject Code: 22323

5		Attempt any <u>TWO</u> of the following:	12
	a)	Write algorithm and 8086 assembly language program to find	
		average salary of five employees of "SILICON Systems". Assume	6M
		4 digit salary of each employee. Also write output.	
	Ans.	Note: Any other correct logic shall be considered.	
		ALGORITHM	Algorith
		1. START	т
		2. DEFINE ARRAY SALARY OF 5 NUMBERS EACH 4 DIGIT IN	<i>2M</i>
		DATA SEGMENT	
		3. DEFINE VARIABLE AVG TO STORE RESULT IN DATA	
		SEGMENT	
		4. MOVE DATA IN AX	
		5. MOVE DATA FROM AX TO DS 👝 📏	
		6. MOVE NUM1 TO CX TO SET COUNTER	
		7. LOAD ADDRESS OF ARRAY SALARY TO BX	
		8. MOVE 0000H TO AX	
		9. ADD CONTENTS OF MEMORY POINTED BY BX TO AX	
		10. IF NO CARRY, GOTO STEP 12	
		11. INCREMENT DX REGISTER	
		12. INCREMENT BX TWICE TO POINT TO NEXT NUMBER	
		13. DECREMENT COUNTER CX; IF NOT ZERO GOTO STEP 9	
		14. DIVIDE THE SUM BY NUM1	
		15. STORE THE RESULT AX INTO AVG	
		16. END	
		PROGRAM	
		DATA SEGMENT	
		SALARY DW 4000H,5000H,6000H,7000H,8000H	
		NUM1 DW 05H	
		AVG DW ?	Program
		DATA ENDS	<i>3M</i>
		CODE SEGMENT	
		ASSUME DS:DATA, CS:CODE	
		START:	
		MOV AX,DATA	
		MOV DS,AX	
		MOV CX,NUM1	
		MOV BX, OFFSET SALARY	
		MOV AX,0000H	

Page 18 / 26

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

Subject Code:

22323

	L1: ADD AX, [BX]	
	JNC NEXT	
	INC DX	
	NEXT: INC BX	
	INC BX	
	LOOP L1	
	DIV NUM1	
	MOV AVG,AX	
	MOV AH,4CH	
	INT 21H	
	CODE ENDS	
	END START	
		Output
	Output	1M
	AVG=6000H	1 171
b)	Refer Fig No. 1 and write truth table and output "Y", write	6M
0)	expression at output of gates, Redraw the Fig. No. 1."	UNI
	Truth Table	
	Inputs Output	
	A B C D Y O O O O O	
	() Black Indexed Sole Sole Sole Sole	
	 Insmediate address a Sundar 	
	ABÇD	
	I I I I I I I I I I I I I I I I I I I	
	ficupit any 1 well of the following: "	
	Fig No.1	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

Subject Code:

22323

Page 20 / 26

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

Subject Code: 22323

6		Attempt any <u>TWO</u> of the following:	12
_	a)	Draw architectural block diagram of 8086 microprocessor and	6M
	-	describe the function of each block.	
	Ans	Note: Any other relevant diagram shall be considered.	
		Internal architecture of Intel 8086:	Explana
		Intel 8086 is a 16 bit integer processor. It has 16-bit data bus and 20-	tion of
		bit address bus. The internal architecture of Intel 8086 is divided into	blocks
		two units,	<i>3M</i>
		1. Bus Interface Unit (BIU)	
		2. Execution Unit (EU).	
		Bus Interface Unit (BIU)	
		Memory Interface:	
		The Bus Interface Unit (BIU) generates the 20-bit physical memory	
		address and provides the interface with external memory	
		(ROM/RAM). 8086 has a single memory interface.	
		Instruction Byte queue:	
		To speed up the execution, 6-bytes of instruction are fetched in	
		advance and kept in a 6-byte Instruction Queue while other	
		instructions are being executed in the Execution Unit (EU).	
		Segment registers:	
		There are four 16-bit segment registers, viz., the code segment (CS),	
		the stack segment (SS) , the extra segment (ES) , and the data segment	
		(DS). The processor uses CS segment for all accesses to instructions	
		referenced by instruction pointer (IP) register.	
		Adder:	
		8086's BIU produces the 20-bit physical memory address by	
		combining a 16-bit segment address with a 16-bit offset address using the adder circuit.	
		2. Execution Unit:	
		Control unit: The instructions fetched by BIU in the instruction byte	
		queue are decoded under the control of timing and control signals.	
		Arithmetic and Logic Unit (ALU) : Execution unit has a 16 bit	
		ALU, which performs arithmetic & logic operations.	
		General purpose register unit: All general registers of the 8086	
		microprocessor can be used for arithmetic and logic operations. The	
		general registers are: Accumulator register AL (8 bit), AX (AL & AH	
		for 16 bit), Base register, Count register, Data register , Stack Pointer	
		(SP), Base Pointer (BP), Source Index (SI), Destination Index (DI).	
		Flags: is a 16-bit register containing 9 1-bit flags: Overflow Flag	
ı			

Page 22 / 26

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

Subject Code: 22323

(OF), Direction Flag (DF), Interrupt-enable Flag (IF), Single-step Flag (TF), Sign Flag (SF), Zero Flag (ZF), Auxiliary carry Flag (AF), Parity Flag (PF), Carry Flag (CF). MEMORY Block BIU Diagram Σ INSTRUCTION STREAM BYTE QUEUE *3M* 8-BUS ES CS SS DS CONTROL EU AH BH 81 CH ARITHMETIC DH DL LOGIC UNIT OPERANDS FLAGS Design full adder using K-MAP and draw logic circuit using **6M** b) basic gates and write truth table. Note : In logic diagram, instead of basic gates, Exclusive –OR Ans. (EXOR) gates shall be considered. Full Adder is the adder which adds three inputs and produces two outputs. The first two inputs are A and B and the third input is an input carry as C_{in}. The output carry is designated as C_{out} and the normal output is designated as S which is SUM. A full adder logic is designed in such a manner that can take eight inputs together to create a byte-wide adder and cascade the carry bit from one adder to the another.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

Subject Code:

22323

Page 24 / 26

AND OF TREAMS

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 2018 EXAMINATION MODEL ANSWER

Subject: Digital Techniques & Microprocessor

c)	Write an assembly language program to find the largest number	6M
	from an array of a 10 numbers. Assume suitable data.	
Ans	Note: Either 8bit or 16bit data shall be considered.	
	DATA SEGMENT	
	ARR DB 1,4,2,3,9,8,6,7,5,10	
	LN DW 10	
	LDB?	Correct
	DATA ENDS	logic
	CODE SEGMENT	3M
	ASSUME DS:DATA, CS:CODE	
	START:	
	MOV AX,DATA	
	MOV DS,AX	Correct
	LEA SI,ARR	Instructi
	MOV AL,ARR[SI]	ons
	MOV L,AL	<i>3M</i>
	MOV CX,LN	
	REPEAT: MOV AL, ARR[SI]	
	CMP L,AL	
	JG NOCHANGE (or JNC NOCHANGE)	
	MOV L,AL	
	NOCHANGE: INC SI	
	LOOP REPEAT	
	MOV AH,4CH	
	INT 21H	
	CODE ENDS	
	END START	