ENGINEERING

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)
 (ISO/IEC - 27001-2005 Certified)

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques \& Microprocessor
Subject Code
22323

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills).
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be givent to any other program based on equivalent concept.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)
 (ISO/IEC - 27001-2005 Certified)

WINTER - 2018 EXAMINATION
MODEL ANSWER
Subject: Digital Techniques \& Microprocessor
Subject Code:
22323

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)
 (ISO/IEC - 27001-2005 Certified)

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques \& Microprocessor
Subject Code:
22323

	d) Ans.	State importance of pipelining in $\mathbf{8 0 8 6}$ microprocessor - In pipelining, while the current instruction is executing, next instruction is fetched using a queue. - Pipelining enables many instructions to be executed at the same time. - It allows execution to be done in fewer cycles. - Speed up the execution speed of the processor. - More efficient use of processor.	2M Any two points 2M
	e) Ans.	Give any four applications of digital circuits. Applications of digital circuits i) Object Counter ii) Dancing Lights iii) Scrolling Notice board iv) Multiplexer v) Digital Computers vi) Washing machines, Television vii) Digital Calculators viii) Military Systems ix) Medical Equipments x) Mobile Phones xi) Radar navigation and guiding systems xii) Microprocessors	2M Any relevant four applicati ons 2M
	f) Ans.	Define the following terms - (i) Physical Address (ii) Effective Address (i) Physical Address (Note: Diagram is Optional) Physical: The address given by BIU is 20 bit called as physical address. It is the actual address of the memory location accessed by the microprocessor. It is calculated as	$2 M$ Each definitio n 1M

OUR CENTERS :
KALYAN | DOMBIVLI | THANE | NERUL | DADAR

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques \& Microprocessor Subject Code: 22323

WINTER - 2018 EXAMINATION

MODEL ANSWER
Subject: Digital Techniques \& Microprocessor
Subject Code:
22323

\begin{tabular}{|c|c|c|c|}
\hline \& \& \begin{tabular}{l}
(iii)Rotate content of BL by 4 bit. \\
MOV CL, 04 H \\
ROR BL, CL \\
OR \\
MOV CL, 04H \\
ROL BL, CL \\
(iv) Perform logical AND operation of AX and BX AND AX,BX
\end{tabular} \& \\
\hline 2. \& \begin{tabular}{l}
a) \\
Ans.
\end{tabular} \& \begin{tabular}{l}
Attempt any THREE of the following: Convert following decimal to octal and Hexadecimal \\
i) \((297)_{10}=(\quad)_{8}\) \\
ii) \((453)_{10}=(\quad)_{16}\) \\
(i) \((\mathbf{2 9 7})_{10}=(\quad)_{8}\) \\
(ii) \((\mathbf{4 5 3})_{10}=(\quad)_{16}\)
\[
(453)_{10}=(?)_{16}
\]
\[
\therefore(453)_{10}=(1 C 5)_{16}
\]
\end{tabular} \& 12
4 M

Each
conversi
on
$2 M$

\hline
\end{tabular}

OUR CENTERS :
KALYAN | DOMBIVLI | THANE | NERUL | DADAR

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques \& Microprocessor \quad Subject Code: 22323

OUR CENTERS :
KALYAN | DOMBIVLI | THANE | NERUL | DADAR

WINTER - 2018 EXAMINATION
 MODEL ANSWER

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)
 (ISO/IEC - 27001-2005 Certified)

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques \& Microprocessor
Subject Code:
22323

		Application: i) Used to design counters in digital circuits. ii) Can be used in frequency divider circuits.	Any one Applicat ion $1 / 2 \boldsymbol{M}$
	$\begin{gathered} \text { d) } \\ \text { Ans. } \end{gathered}$	Prove $A(\bar{A}+C)(\bar{A} B+C)(\bar{A} B C+\bar{C})=0$ Note: Any other relevant laws applied shall be considered while obtaining the correct answer. $\begin{array}{rlr} L \cdot H \cdot S & =A(\bar{A}+C)(\bar{A} B+C)(\bar{A} B C+\bar{C}) \\ & =(A \bar{A}+A C)(\bar{A} B+C)(\bar{A} B C+\bar{C}) \\ & =(0+A C)(\bar{A} B+C)(\bar{A} B C+\bar{C}) \\ & =(A \bar{A} B C+A C)(\bar{A} B C+\bar{C}) \quad(\quad) \quad(C=C) \\ & =(O+A C)(\bar{A}=0) \\ & =A \bar{A} B C+\bar{C}) \quad(\because A \bar{A}=0) \\ & =0+0 \\ & =0 \\ & =\text { R.H.S. } \end{array}$ Hence proved	4M Correct solution 4M
3	a) Ans.	Attempt any THREE of the following: Implement OR gate and NOT gate using "Universal NAND gate". Write expressions for both. 1. "OR" gate using "Universal NAND" gate:	12 4M Output Expressi on 1M Circuit Diagram 1M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)
 (ISO/IEC - 27001-2005 Certified)

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques \& Microprocessor
Subject Code:
22323

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)
 (ISO/IEC - 27001-2005 Certified)

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques \& Microprocessor
Subject Code:
22323

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)
 (ISO/IEC - 27001-2005 Certified)

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques \& Microprocessor
Subject Code:
22323
(iii) IDJV
(NOTE: CONSIDER THE GIVEN INSTRUCTION AS IDIV):
Syntax : IDIV source
It divides a signed word in AX by an signed byte in source during $16 / 8$ division. Also it is used to divide a signed double word in DX,AX by an signed word in source during 16/8 division. operation:
a. if the source is byte then
$\mathrm{AL} \longleftarrow \quad \mathrm{AL} /$ signed 8 bit source
AH $\longleftarrow \quad$ AL MOD signed 8 bit source
b. if the source is word then
$\mathrm{AX} \longleftarrow \quad \mathrm{DX}, \mathrm{AX} /$ signed 16 bit source
DX \longleftarrow DX,AX MOD signed 16 bit source

IDIV BL

This instruction is used to divide signed word in AX register by signed byte in BL register. The quotient after division will be stored in AL register, whereas the remainder is stored in AH register.

IDIV BX

This instruction is used to divide signed double word in DX, AX register by signed word in BX register. The signed 16 bit quotient will be stored in AX register, whereas the signed 16 bit remainder is stored in AH register.
(iv) XOR - Used to perform Exclusive-OR operation over each bit in a byte/word with the corresponding bit in another byte/word.
Syntax: XOR Destination, Source
Example:
For 8bit data:
XOR AL, BL
This instruction performs Exclusive-OR bit by bit at AL with BL and the result is stored in AL..
For 16bit data:
XOR AX, BX
This instruction performs Exclusive-OR bit by bit word at AX with word in BX and the result is stored in AX.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)
 (ISO/IEC - 27001-2005 Certified)

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques \& Microprocessor \quad Subject Code: 22323

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques \& Microprocessor Subject Code: 22323

		- K-map representation for the given expression will be- - To find equation (expression) $=$ Group (1) (QUAD), $\Rightarrow \overline{C D}$ Group (2) (QUAD) $\Rightarrow A \bar{A} \bar{C}$ Group (3) (PA\|R) $\Rightarrow \bar{B} C \bar{D}$ Therefore, The Required expression is, $f(A, B, C, D)=\overline{C D}+A \bar{C}+\bar{B} C \bar{D}$	Correct K-map $2 M$ Correct equation $2 M$
4	a)	Attempt any THREE of the following Suggest "Two instruction" for each of the following addressing modes. (i) Register Addressing Mode. (ii) Direct Addressing Mode (iii) Based Indexed Addressing Mode (iv) Immediate Addressing Mode.	$\begin{gathered} \hline 12 \\ 4 \mathrm{M} \end{gathered}$

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques \& Microprocessor \quad Subject Code: 22323

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)
 (ISO/IEC - 27001-2005 Certified)

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques \& Microprocessor
Subject Code:
22323

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001-2005 Certified)

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques \& Microprocessor
Subject Code:
22323

		uential logic circ present value of signal. uential circuit ca ck circuit. quential circuit u ck circuit in orde	uits are those, whose f the input but also on an be considered as con uses a memory eleme r to store past values.	tput depends not only previous values of the inational circuit with like flip - flops as	Block diagram 1M Explana tion 1M
d) Ans	i) Differentiate between RISC and CISC processor (Three point) ii) Compare 8086 and 80586 (Pentium)(3 points) i) Differentiate between RISC and CISC processor (Three point)				4M Any three points 2M
	Sr. No	PARAMETER	\qquad	CISC PROCESSOR	
	1.	Instruction set	Few instructions	More instructions	
	2.	Data types	Few data types	More data types	
	3.	Addressing mode	Few Addressing modes	More Addressing modes	
	4.	Registers	Large number of general purpose registers	Small number of general purpose registers \& special purpose registers.	
	5.	Architecture type	Load/store architecture	No load/store architecture	
	6.	Operation	Single- cycle	Multi-cycle	
	7.	Design	Hardwired control	Micro-coded	
	8.	Instruction Set format	Fixed length	Variable length	

OUR CENTERS :
KALYAN | DOMBIVLI | THANE | NERUL | DADAR

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques \& Microprocessor \quad Subject Code: 22323

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001-2005 Certified)

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques \& Microprocessor \quad Subject Code: 22323

5	a) Ans.	Attempt any TWO of the following: Write algorithm and 8086 assembly language program to find average salary of five employees of "SILICON Systems". Assume 4 digit salary of each employee. Also write output. Note: Any other correct logic shall be considered. ALGORITHM 1. START 2. DEFINE ARRAY SALARY OF 5 NUMBERS EACH 4 DIGIT IN DATA SEGMENT 3. DEFINE VARIABLE AVG TO STORE RESULT IN DATA SEGMENT 4. MOVE DATA IN AX 5. MOVE DATA FROM AX TO DS 6. MOVE NUM1 TO CX TO SET COUNTER 7. LOAD ADDRESS OF ARRAYSALARY TO BX 8. MOVE 0000H TO AX 9. ADD CONTENTS OF MEMORY POINTED BY BX TO AX 10. IF NO CARRY, GOTO STEP 12 11. INCREMENT DX REGISTER 12. INCREMENT BX TWICETO POINT TO NEXT NUMBER 13. DECREMENT COUNTER CX; IF NOT ZERO GOTO STEP 9 14. DIVIDE THE SUM BY NUM1 15. STORE THE RESULT AX INTO AVG 16. END PROGRAM DATA SEGMENT SALARY DW $4000 \mathrm{H}, 5000 \mathrm{H}, 6000 \mathrm{H}, 7000 \mathrm{H}, 8000 \mathrm{H}$ NUM1 DW 05H AVG DW? DATA ENDS CODE SEGMENT ASSUME DS:DATA, CS:CODE START: MOV AX,DATA MOV DS,AX MOV CX,NUM1 MOV BX, OFFSET SALARY MOV AX, 0000 H	12 6M Algorith m $2 M$ Program 3M

WINTER - 2018 EXAMINATION

MODEL ANSWER

Subject: Digital Techniques \& Microprocessor \quad Subject Code: 22323

	L1: ADD AX, [BX] JNC NEXT INC DX NEXT: INC BX INC BX LOOP L1 DIV NUM1 MOV AVG,AX MOV AH,4CH INT 21H CODE ENDS END START Output AVG=6000H	Output 1M
b)	Refer Fig No. 1 and write truth table and output "Y", write expression at output of gates. Redraw the Fig. No. 1." Fig No. 1	6M

OUR CENTERS :
KALYAN | DOMBIVLI | THANE | NERUL | DADAR

WINTER - 2018 EXAMINATION
MODEL ANSWER
Subject: Digital Techniques \& Microprocessor
Subject Code:
22323

OUR CENTERS :
KALYAN | DOMBIVLI | THANE | NERUL | DADAR

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)
 (ISO/IEC - 27001-2005 Certified)

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques \& Microprocessor
Subject Code:
22323
Ans.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)
(ISO/IEC - 27001-2005 Certified)

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques \& Microprocessor
Subject Code
22323

6	a) Ans	Attempt any TWO of the following: Draw architectural block diagram of $\mathbf{8 0 8 6}$ microprocessor and describe the function of each block. Note: Any other relevant diagram shall be considered. Internal architecture of Intel 8086: Intel 8086 is a 16 bit integer processor. It has 16-bit data bus and 20bit address bus. The internal architecture of Intel 8086 is divided into two units, 1. Bus Interface Unit (BIU) 2. Execution Unit (EU). Bus Interface Unit (BIU) Memory Interface: The Bus Interface Unit (BIU) generates the 20-bit physical memory address and provides the interface with external memory (ROM/RAM). 8086 has a single memory interface. Instruction Byte queue: To speed up the execution, 6 -bytes of instruction are fetched in advance and kept in a 6 byte Instruction Queue while other instructions are being executed in the Execution Unit (EU). Segment registers: There are four 16 -bit/segment registers, viz., the code segment (CS), the stack segment (SS), the extra segment (ES), and the data segment (DS). The processor uses CS segment for all accesses to instructions referenced by instruction pointer (IP) register. Adder: 8086's BIU produces the 20-bit physical memory address by combining a 16 -bit segment address with a 16-bit offset address using the adder circuit. 2. Execution Unit: Control unit: The instructions fetched by BIU in the instruction byte queue are decoded under the control of timing and control signals. Arithmetic and Logic Unit (ALU) : Execution unit has a 16 bit ALU, which performs arithmetic \& logic operations. General purpose register unit: All general registers of the 8086 microprocessor can be used for arithmetic and logic operations. The general registers are: Accumulator register AL (8 bit), AX (AL \& AH for 16 bit), Base register, Count register, Data register, Stack Pointer (SP), Base Pointer (BP), Source Index (SI), Destination Index (DI). Flags: is a 16-bit register containing 9 1-bit flags: Overflow Flag	12 6 M Explana tion of blocks $3 M$

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001-2005 Certified)

WINTER - 2018 EXAMINATION
 MODEL ANSWER

Subject: Digital Techniques \& Microprocessor
Subject Code: 22323

WINTER - 2018 EXAMINATION

MODEL ANSWER
Subject: Digital Techniques \& Microprocessor
Subject Code:
22323

WINTER - 2018 EXAMINATION
 MODEL ANSWER

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)
 (ISO/IEC - 27001-2005 Certified)

WINTER - 2018 EXAMINATION
MODEL ANSWER
Subject: Digital Techniques \& Microprocessor \quad Subject Code: 22323

